Prof. Georg Hoever

6. Übungsblatt zur Vorlesung Höhere Mathematik 2 für (Wirtschafts-)Informatik

Aufgabe 1

Die Bremswirkung der Wirbelstrombremse einer Straßenbahn ist proportional zur Geschwindigkeit der Bahn. Stellen Sie eine Differenzialgleichung für die Geschwindigkeit der Bahn beim Bremsen auf.

Versuchen Sie, eine Lösung zu finden.

Aufgabe 2

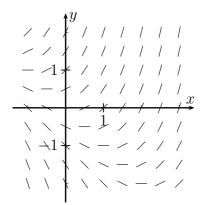
Skizzieren Sie das Richtungsfeld zur DGL $y'=x\cdot y^2$ und zeichnen Sie qualitativ Lösungsverläufe ein, die zu den folgenden Anfangsbedingungen gehören:

a)
$$y(1) = -1$$

a)
$$y(1) = -1$$
 b) $y(1) = -2$

c)
$$y(0) = 2$$

Aufgabe 3

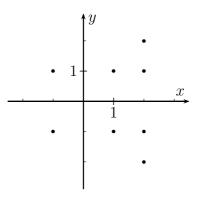

Betrachtet wird das Anfangswertproblem

$$y' = x + y$$
, $y(1) = -1$.

Berechnen Sie eine Näherung für y(2) zur Schrittweite h = 0.5

- a) mit Hilfe des Euler-Verfahrens,
- b) mit Hilfe des Heun-Verfahrens.

Veranschaulichen Sie sich jeweils im Richtungsfeld, was passiert.



Aufgabe 4 (ehemalige Klausuraufgabe, 10 Minuten)

Betrachtet wird die Differenzialgleichung

$$y' = (x-1) \cdot y^2.$$

- a) Zeichnen Sie in das Diagramm an den markierten acht Punkten die Richtungselemente für das Richtungsfeld der Differenzialgleichung.
- b) Führen Sie zwei Schritte des Euler-Verfahrens zur Lösung des Anfangswertproblems mit y(0) = 1 zu der Differenzialgleichung, Schrittweite 0.5, aus.

Aufgabe 5

Betrachtet wird ein Räuber-Beute-Modell mit Ressourcenbegrenzung:

Sei u(t) die Populationsgröße der Beutetiere zur Zeit t und v(t) die des entsprechenden Räubers. Dazu wird das Differenzialgleichungssystem

$$u' = u \cdot (2 - v - u)$$

$$v' = v \cdot (u - 1 - v)$$

betrachtet. Zur Zeit t = 0 sei u(0) = v(0) = 0.5.

- a) Berechnen Sie mit dem Euler-Verfahren zur Schrittweite h=0.1 Näherungen für u(0.3) und v(0.3).
- b) Berechnen Sie mit dem Heun-Verfahren einen Schritt zur Schrittweite h=0.1.

Aufgabe 6

Betrachtet wird die Differenzialgleichung dritter Ordnung

$$y''' = 2xy'y'' + 2y^2y'$$

mit den Anfangswerten

$$y(1) = 1$$
, $y'(1) = -1$, $y''(1) = 2$.

- a) Transformieren Sie die Differenzialgleichung inklusive der Anfangsbedingung in ein Differenzialgleichungssystem erster Ordnung.
- b) Führen Sie zwei Schritte des Euler-Verfahrens mit der Schrittweite h=0.1 aus.
- c) Führen Sie einen Schritt des Heun-Verfahrens mit der Schrittweite h=0.1 aus.