Fachbereich Elektrotechnik und Informationstechnik

Prof. Georg Hoever

WS 2023/24 19.01.2024

Übungsblatt 14-2 zur Vorlesung Höhere Mathematik 1

Aufgabe 1

Sei $D \in \mathbb{R}^{3\times 3}$ die Diagonalmatrix mit den Diagonaleinträgen -1, 2, 1 (von links oben nach rechts unten). Berechnen Sie $D \cdot A$ und $A \cdot D$ zu

$$A = \left(\begin{array}{rrr} 2 & 3 & 1 \\ -1 & 0 & 4 \\ 5 & 1 & 5 \end{array}\right).$$

Aufgabe 2

- a) Ist das Produkt zweier symmetrischer Matrizen wieder symmetrisch?
- b) Ist das Quadrat einer symmetrischen Matrix wieder symmetrisch?
- c) Ist das Produkt zweier Diagonalmatrizen wieder eine Diagonalmatrix?

Aufgabe 3

Zu einer Matrix $A \in \mathbb{R}^{n \times n}$ heißt die Abbildung $\mathbb{R}^n \to \mathbb{R}$, $x \mapsto x^T A x$ quadratische Form.

a) Sei
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \\ 0 & 3 & 4 \end{pmatrix}$$
.

Geben Sie die quadratische Form $x^T A x$ zu $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ in Koordinatenschreibweise an.

b) Geben Sie eine Matrix $A \in \mathbb{R}^{3 \times 3}$ an mit

$$x^T A x = x_1^2 + 2x_1 x_2 - 4x_1 x_3 + x_3^2 \qquad (x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3).$$

Finden Sie auch eine symmetrische Matrix A, die dies erfüllt?

Aufgabe 4

Sei
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
 und $B = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$.

- a) Berechnen Sie A^{-1} und B^{-1} .
- b) Berechnen Sie $(A \cdot B)^{-1}$ einerseits, indem Sie $A \cdot B$ berechnen und dazu die Inverse bestimmen, und andererseits, indem Sie A^{-1} und B^{-1} zu Hilfe nehmen.

Aufgabe 5

Für welche Werte von c ist die Matrix

$$A = \left(\begin{array}{ccc} 1 & 3 & 0 \\ 0 & 1 & 2 \\ -1 & -2 & c \end{array}\right)$$

invertierbar? (Vgl. Blatt 11-2, Aufgabe 5)

Wie lautet dann die Inverse A^{-1} ?

Aufgabe 6

Sei
$$A = \begin{pmatrix} 1 & 0 & -3 \\ 3 & 1 & 0 \\ 4 & 2 & 4 \end{pmatrix}$$
 und $B = \begin{pmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & 0 & 1 \\ -1 & 2 & 3 & 5 \\ 0 & 2 & 1 & 4 \end{pmatrix}$.

- a) Bestimmen Sie A^{-1} und B^{-1} .
- b) Geben Sie Lösungen x an zu

$$Ax = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad Ax = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad Bx = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \text{bzw.} \quad Bx = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \end{pmatrix}.$$

Aufgabe 7

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt orthogonal genau dann, wenn $A^{-1} = A^T$ ist.

a) Welche der folgenden Matrizen sind orthogonal?

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \ (\alpha \in \mathbb{R}), \qquad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- b) Sei $a_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ und $a_3 = \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}$.
 - 1) Prüfen Sie nach, dass die drei Vektoren jeweils orthogonal zueinander sind.
 - 2) Bestimmen Sie λ_i so, dass für $\tilde{a_i} = \lambda_i \cdot a_i$ gilt: $||\tilde{a_i}|| = 1$.
 - 3) Sei $A \in \mathbb{R}^{3 \times 3}$ die Matrix bestehend aus $\tilde{a_1}$, $\tilde{a_2}$ und $\tilde{a_3}$ als Spalten. Überlegen Sie sich, dass A orthogonal ist.

(Tipp: Blatt 14-1, Aufgabe 9, b))

4) Prüfen Sie nach, dass die Zeilen von A als Vektoren aufgefasst normiert und orthogonal zueinander sind.