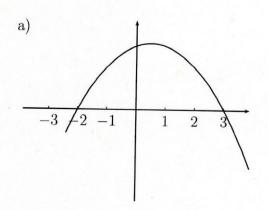
Aufgabe 1 (18 Punkte, davon bis zu 9 Enthaltungspunkte)

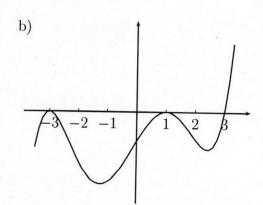
Welche Funktion erzeugt den nebenstehenden Funktionsgraf?

(Die Skalierungen der y-Achse sind unterschiedlich.)

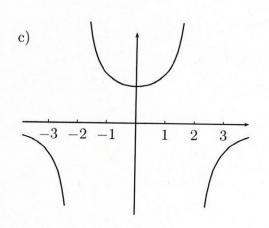
Kreuzen Sie jeweils die richtige Antwortmöglichkeit (3 Punkte) oder "Enthaltung" (1,5 Punkt) an. Sie brauchen Ihre Antwort nicht zu begründen.



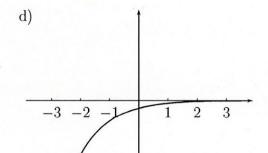
$f(x) = x^2 + x + 6$	
$f(x) = -x^2 + x + 6$	X
$f(x) = x^2 + x - 6$	
$f(x) = -x^2 + x - 6$	
Enthaltung	



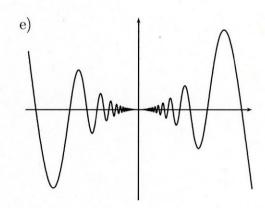
$f(x) = (x+3)^2(x+1)^2(x-3)$	
$f(x) = (x+3)(x+1)^2(x-3)^2$	
$f(x) = (x+3)^2(x-1)^2(x-3)$	X
$f(x) = (x+3)(x-1)^2(x-3)^2$	
Enthaltung	



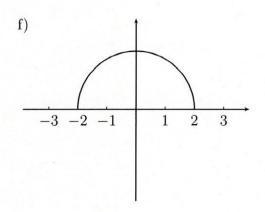
$f(x) = \frac{1}{x+2} + \frac{1}{x-2}$	
$f(x) = \frac{1}{x+2} - \frac{1}{x-2}$	X
$f(x) = -\frac{1}{x+2} + \frac{1}{x-2}$	
$f(x) = -\frac{1}{x+2} - \frac{1}{x-2}$	
Enthaltung	



$f(x) = e^x$	
$f(x) = e^{-x}$	
$f(x) = -e^x$	
$f(x) = -e^{-x}$	X
Enthaltung	



$f(x) = \frac{1}{x^2} \cdot \sin x$	
$f(x) = \frac{1}{x} \cdot \sin x^2$	
$f(x) = x \cdot \sin \frac{1}{x^2}$	
$f(x) = x^2 \cdot \sin \frac{1}{x}$	X
Enthaltung	

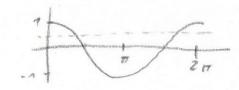


$f(x) = \frac{1}{x^2 + 4}$	
$f(x) = e^{-x^2}$	
$f(x) = \sqrt{4 - x^2}$	X
$f(x) = \sin x + \cos x$	
Enthaltung	

Aufgabe 2 (8 Punkte)

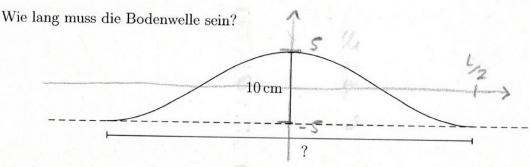
Geben Sie alle Werte $x \in [0, 2\pi]$ an, für die gilt

$$\sin^2 x - \cos x = \frac{1}{4}.$$



Aufgabe 3 (11 Punkte)

Zur Verkehrsberuhigung soll eine $10\,\mathrm{cm}$ hohe Cosinus-förmige Bodenwelle auf eine Straße gebaut werden. Aus sicherheitstechnischen Gründen darf die maximale Steigung gleich $0.1~\mathrm{sein}.$



Bei eine Lunge I de Bodm welle wird bei dem eingezeichneten hO-System mit 1-cm-Einheit dre Bodmwelle beschrieben durch

$$\rho(x) = 5 \cdot \cos\left(\frac{2\pi}{L} \cdot x\right)$$

$$mit \quad \rho'(x) = -5 \cdot \frac{2\pi}{L} \cdot \sin\left(\frac{2\pi}{L} \cdot x\right)$$

Dre maximale Stiger ret bis x = - 4, also

$$0.1 = -5 \cdot \frac{2\pi}{L} \cdot \sin\left(\frac{2\pi}{L} \cdot (-\frac{L}{2})\right)$$

$$= -\frac{10\pi}{L} \cdot \sin\left(-\frac{\pi}{2}\right) = \frac{10\pi}{L}$$

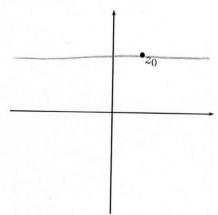
=> Die lange muss 100 T em = TT m sein.

Aufgabe 4 (6+4=10 Punkte)

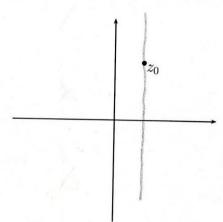
a) Zeichnen Sie zu dem in den Gaußschen Zahlenebenen markierten

$$z_0 = a_0 + b_0 \mathbf{j} = r_0 \cdot e^{\varphi_0 \mathbf{j}} \in \mathbb{C}$$

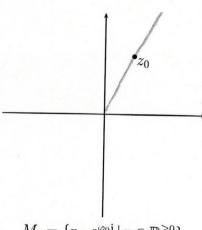
jeweils die angegebene Menge ein.



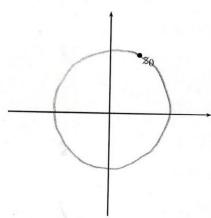
$$M_1 = \{a + b_0 \mathbf{j} \mid a \in \mathbb{R}\}$$



$$M_2 = \{a_0 + b\mathbf{j} \mid b \in \mathbb{R}\}$$

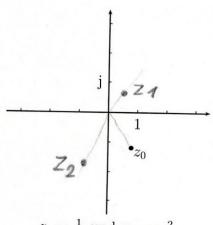


$$M_3 = \{ r \cdot e^{\varphi_0 \mathbf{j}} \mid r \in \mathbb{R}^{\geq 0} \}$$

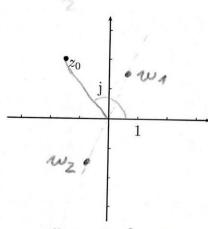


$$M_4 = \{ r_0 \cdot e^{\varphi \mathbf{j}} \, | \, \varphi \in \mathbb{R} \}$$

b) Zeichnen Sie zu dem in den Gaußschen Zahlenebenen markierten $z_0 \in \mathbb{C}$ jeweils die angegebene Punkte ein.



$$z_1 = \frac{1}{z_0} \text{ und } z_2 = z_0^2$$



alle w mit $w^2 = z_0$

Aufgabe 5 (2+3+2+4+3=14 Punkte)

Miniland hat dieses Jahr einen CO_2 -Ausstoß von 2000 t. Es will seinen CO_2 -Ausstoß jährlich um 20% reduzieren.

- a) Geben Sie eine Formel für den CO_2 -Ausstoß im n-ten Jahr an. (Dieses Jahr = Jahr 0.)
- b) Ab welchem Jahr beträgt der jährliche CO_2 -Ausstoß weniger als $100\,\mathrm{t}$? (Ein formelmäßiger Ausdruck, in dem noch ein Logarithmus vorkommt, reicht.)
- c) Wie groß ist der gesamte CO_2 -Ausstoß (ab diesem Jahr bis in alle Ewigkeit)?
- d) Nach wieviel Jahren hat Miniland in Summe mehr als $8000\,\mathrm{t}$ CO_2 ausgestoßen? (Ein formelmäßiger Ausdruck, in dem noch ein Logarithmus vorkommt, reicht.)
- e) Wie groß muss die jährliche Einsparung mindestens sein, damit der gesamte CO_2 -Ausstoß höchstens 8000 t beträgt?

c)
$$\sum_{n=0}^{\infty} a_n = 2000 t \cdot \sum_{n=0}^{\infty} 0.8^n = 2000 t \cdot \frac{1}{1-0.8} = 2000 t \cdot \frac{1}{0.2}$$

d)
$$8000t < \frac{Z}{N} a_n = 2000t \cdot \frac{Z}{N} 0.8^n = 2000t \cdot \frac{1 - 0.8^{N+1}}{1 - 0.8}$$

= $2000t \cdot \frac{1 - 0.8^{N+1}}{0.2} = 10000t \cdot (1 - 0.8^{N+1})$

e) Bi jährlidu Einspanny
$$p$$
 ict $a_n = (1-p)^n \cdot 2000t$, also $8000t = \sum_{n=0}^{\infty} (1-p)^n \cdot 2000t = 2000t \cdot \frac{1}{1-(1-p)} = 2000t \cdot \frac{1}{p}$

Aufgabe 6 (5 + 6 = 11 Punkte)

Sei $f_c(x) = x \cdot \ln(c \cdot x)$ mit einem Parameter c > 0 und Definitionsbereich $\mathbb{R}^{>0}$.

- a) Wie muss c gewählt werden, damit f_c bei x = 1 eine Extremstelle hat?
- b) Wie muss c gewählt werden, damit $\int_{0}^{1} f_{c}(x) dx = 1$ ist?

Tipp: Nutzen Sie eine geschickte partielle Integration!

a) Es gilt.

$$f'_{c}(x) = 1 \cdot \ln(cx) + x \cdot \frac{1}{c \cdot x} \cdot c$$

$$= \ln(cx) + 1$$

Bei einer Extrem stelle bir 1 gilt

b)
$$1 = \int_{0}^{1} x \cdot \ln(cx) dx = \frac{1}{2} x^{2} \cdot \ln(cx) \left| -\int_{0}^{1} \frac{1}{2} x^{2} \cdot \frac{1}{cx} \cdot c dx \right|$$

 $= \frac{1}{2} \cdot \ln c - 0 - \int_{0}^{1} \frac{1}{2} x dx$

Aufgabe 7 (7 + 5 = 12 Punkte)

a) Zeigen Sie mittels der Taylor-Entwicklung, dass die Potenzreihenentwicklung zur Funktion $f(x) = \arcsin x$ beginnt mit

$$\arcsin x = x + \frac{1}{6}x^3 + \text{ Terme mit } x^4 \text{ und h\"oher.}$$

(Hinweis:
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
.)

b) Bestimmen Sie

$$\lim_{x \to 0} \frac{\frac{1}{2}\arcsin(2x) - x}{x^3}.$$

a) PR-Entr = Taylorentn. in 0, also
$$f(x) \approx f(0) + f'(0) \cdot x + \frac{1}{2}f''(0) \cdot x^{2} + \frac{1}{3!}f'''(0) \cdot x^{3} + \dots$$
Es rot $f(x) = \arccos x \Rightarrow f(0) = \arcsin 0 = 0$

$$f'(x) = \frac{1}{\sqrt{4-x^{2}}} \Rightarrow f'(0) = \frac{1}{4} = 1$$

$$= (1-x^{2})^{-\frac{1}{2}}$$

$$f''(x) = -\frac{1}{2}(1-x^{2})^{-\frac{3}{2}} \cdot (-2x)$$

$$= x \cdot (1-x^{2})^{-\frac{3}{2}} \Rightarrow f''(0) = 0$$

$$f'''(x) = 1 \cdot (1-x^{2})^{-\frac{3}{2}} + x \cdot (-\frac{3}{2}) \cdot (1-x^{2})^{-\frac{5}{2}} \cdot (-2x)$$

$$=) f'''(x) = 1$$

$$\Rightarrow \arccos x \approx 0 + 1 \cdot x + \frac{1}{2} \cdot 0 \cdot x^{2} + \frac{1}{6} \cdot 1 \cdot x^{3} + \dots$$

$$= x + \frac{1}{6} \cdot x^{3} + \dots$$

$$= \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x + \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x$$

$$= \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x + \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x$$

$$= \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x + \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x$$

$$= \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x + \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x$$

$$= \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x + \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x$$

$$= \frac{1}{2} \cdot (2x + \frac{1}{6}(2x)^{3} + \dots) - x$$

Aufgabe 8 (3+3=6 Punkte)

Das Integral $\int_0^6 f(x) dx$ zur abgebildeten Funktion f (mit einer Maximalstelle bei 1.5 und einer Minimalstelle bei 5) soll durch eine Riemannsche Zwischensumme S zur Zerlegung

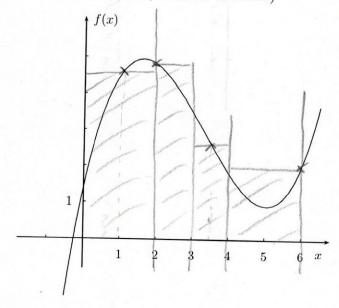
$$x_0 = 0$$
, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$

angenähert werden.

a) Skizzieren Sie in dem Bild, wie sich die Riemannsche Zwischensumme S ergibt, wenn man als Zwischenstellen

$$\widehat{x}_1 = 1$$
, $\widehat{x}_2 = 2$, $\widehat{x}_3 = 3.5$, $\widehat{x}_4 = 6$

wählt. (Sie brauchen nur zu zeichnen, nicht zu rechnen.)

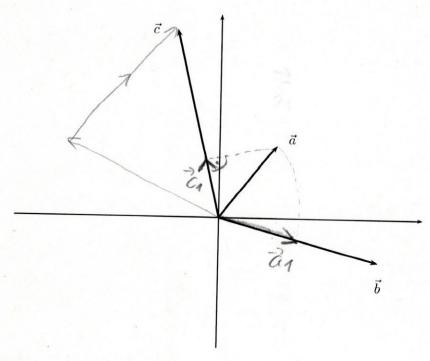


b) Welche Zwischenstellen $\widehat{x_1}$, $\widehat{x_2}$, $\widehat{x_3}$ und $\widehat{x_4}$ muss man wählen, damit die Riemannsche Zwischensumme S (bei gleicher Zerlegung) der Untersumme entspricht?

$$\widehat{x_1} = O \qquad \widehat{x_2} = \mathcal{Z} \qquad \widehat{x_3} = \mathcal{Y} \qquad \widehat{x_4} = \mathcal{Z}$$

Aufgabe 9 (3+2+2+2=9 Punkte)

Betrachtet werden die Vektoren $\vec{a}, \, \vec{b}, \, \vec{c} \in \mathbb{R}^2$ entsprechend der Skizze.



a) Wie lässt sich \vec{c} als Linear kombination von \vec{a} und \vec{b} darstellen?

Zeichnen Sie die Situation in die Skizze und geben Sie die Linearkombination an.

Hinweis: Die Koeffizienten der Linearkombination sind ganzzahlig!

b) Es sei $\vec{d} = \vec{a} + \frac{1}{2}\vec{c}$.

Wie lässt sich \vec{d} als Linearkombination von \vec{a} und \vec{b} darstellen?

Geben Sie die Linearkombination an.

c) Gesucht ist ein Vektor \vec{a}_1 , der die gleiche Länge wie \vec{a} besitzt, so dass das Skalarprodukt von $\vec{a}_1 \cdot \vec{b}$ maximal groß wird.

Zeichnen Sie \vec{a}_1 in die Skizze oben ein!

d) Gesucht ist ein skalares Vielfaches $\vec{c_1} = \lambda \cdot \vec{c}$ von \vec{c} , so dass das Skalarprodukt von $\vec{a} \cdot \vec{c}$ gleich dem Produkt der Längen von \vec{c} und $\vec{c_1}$ ist.

Zeichnen Sie \vec{c}_1 in die Skizze oben ein!

Aufgabe 10 (12 Punkte)

Bestimmen Sie die Schnittgerade der Ebenen

$$E_1 = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} | \lambda, \mu \in \mathbb{R} \right\}$$

und

$$E_{2} = \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} | \lambda, \mu \in \mathbb{R} \right\}.$$

$$Gesold: \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + \beta \cdot \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} + \beta \cdot \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$$

$$Gesold: \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$$

$$Gesold: \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$$

$$Gesold: \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$$

$$Gesold: \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$$

$$Gesold: \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$$

$$Gesold: \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + \beta \cdot \begin{pmatrix} -1 \\ 2 \\$$

Die Solit gerale erhalt man also über E_2 mit $B=\gamma$, $\alpha:-4-4\gamma$: $\begin{pmatrix} 0\\1\\-1 \end{pmatrix} + \left(-4-4\gamma\right) \begin{pmatrix} -1\\-1\\2 \end{pmatrix} + \gamma \begin{pmatrix} -1\\2\\4 \end{pmatrix} = \begin{pmatrix} 4\\5\\-9 \end{pmatrix} + \gamma \begin{pmatrix} 3\\6\\-4 \end{pmatrix}$ $\Rightarrow Die Solit gerale ist <math>g: \left\{ \begin{pmatrix} 4\\5\\-9 \end{pmatrix} + \gamma \begin{pmatrix} 3\\6\\-4 \end{pmatrix} \mid J \in \mathbb{R} \right\}$

Aufgabe 11 (5 + 3 = 8 Punkte)

Sei

$$A = \begin{pmatrix} 0 & a & 2 \\ 3 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix}$$

mit einem Parameter $a \in \mathbb{R}$.

- a) Für welche $a \in \mathbb{R}$ ist A invertierbar? (Tipp: Determinante!)
- b) Geben Sie eine Matrix X an, so dass gilt

$$A \cdot X = \begin{pmatrix} 0 & 2 \\ 6 & -1 \\ 2 & -1 \end{pmatrix}.$$

$$0 + del A = 0 + (-a) + 0 - 4 - 0 - (-3a)$$

$$= 2a - 4$$

$$6) a + 2$$

$$6) x = \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$